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Abstract. Grazing collisions occurring along the gas–solid interacting region are considered
together with the discrete velocity model in order to obtain the enhanced volume flow rate (of a
quasi-2D flow) for many molecules subjected to a non-boundary-driven force in a confined slender
channel. This presents the first test of this effect on a many-particle system not far from equilibrium.

1. Introduction

Many molecules subjected to mutual collisions occurring in a molecular gas flow may approach
a stationary state [1] under certain constraints. The relevant (simple hydrodynamic) quasi-2D
solutions in a confined domain, e.g. a rather long (slender) channel, will strongly depend
on the (dynamical) ensemble we can propose [2] or the related near-equilibrium distribution
function of molecular velocities, e.g. Maxwellian, a kind of thermostat. Solutions of simple
stationary (molecular) flows could also be dependent on boundary conditions for cases driven
by boundaries or others which are driven by non-boundary forces.

Starting from a simple approach, such as taking only binary collisions into consideration,
many results for simple quasi-2D molecular gas flows have been obtained ad hoc [3]. Most of
them are based on continuous and discrete Boltzmann and/or Enskog equations [4] together
with diffuse-reflection boundary conditions along the gas–solid boundaries [5]. Effects of
grazing collisions (contacts with zero momentum transfer), however, were seldom considered
or included since there are intrinsic mathematical difficulties or singularities when they are
adopted or implemented [4, 6–8]. With the hard-sphere potential (considered in collision
kernel), the positions and momenta of outgoing particles or molecules after grazing collision
do not depend smoothly—sometimes not even continuously—on incoming data.

For such collisions, the deflection is small and there is practically no difference between
the post- and pre-collisional velocities. Thus, the collision kernel presents a strong singularity
for grazing collisions [8] and the integrability of the collision kernel can only be guaranteed
when grazing collisions are neglected. The latter is the so-called ‘cutoff assumption’. This
kind of collision, however, does lead to the existence of partial flows [4, 6] and produces
non-negligible effects for long time [8]. Besides, it is usual that distant collisions (in plasma)
involve small momentum transfers. This resembles the effect of grazing collisions.

In this paper we present consequences of grazing collisions that might enhance the volume
flow rate for the stationary flow of many molecules subjected to a non-boundary-driven unit
force in a confined slender channel by adopting the discrete velocity model [9, 10] without
using the continuous Boltzmann approach. We noticed that 1D test case had been considered
before [4, 12]. The test case here will be a quasi-2D one.
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2. Mathematical formulations

The governing equations we use had been well developed in the 1980s [9–13], depending on
the discrete velocity models [14–16] that will be used,

∂Ni

∂t
+ ui · ∇Ni = 1

2

∑
j,k,l

(A
ij

klNkNl − AklijNiNj ) i = 1, . . . , p (1)

whereNi is the discrete number density and ui is the associated velocity. Ai,jkl is the transitional
measure related to the collisions from {i, j} to {k, l}. The stationary solutions for simple
geometry problems were also reported recently [4]. We can transform this system of partial
differential equations [12] into a nonlinear ordinary differential equation for the 2D velocity
field after we introduce the macroscopic density and mean velocity field (in the present study,
we shall choose p = 2q, q being a positive integer 2 [11]). This is a four-velocity coplanar
model. The above equations (1) can thus be simplified by adjusting the appropriate Ai,jkl and
following the assumptions of this model.

A
ij

kl are nonnegative constants satisfying (i) indistinguishability of the molecules in
collision, (ii) conservation of momentum in the collision and (iii) the microreversibility
condition. Here they are related to the product of the effective collision cross-section S and
the molecular velocity modulus with the admissible collision probability, i.e. collisions: {1, 3}
to {2, 4}.

To demonstrate our approach, but to retain simplicity, we shall consider a simple-geometry
test case: many particles flowing along a slender long channel from an inlet to an outlet (the
length in between isL, both walls being confined and separated by a distance d (d � L). Now,
u1 = c(α, β), u2 = c(−β, α), u3 = −c(α, β), u4 = c(β,−α), α = cos(θ), β = sin(θ ); θ is
the angle between the ξ -axis and theu1-direction and c is the reference velocity modulus [9–17];
here the ξ -axis is in the streamwise direction. The grazing collisions arise from the very small
angle between the incoming velocity and the flat-wall plane or almost-null incoming (and/or
thus reflecting) velocity of the particles.

To obtain the macroscopically hydrodynamical field, which is useful for comparison with
previous experimental data, we let n = N1 +N2 +N3 +N4, nu = c(αN1 −βN2 −αN3 +βN4)

and nv = c(βN1 + αN2 − βN3 − αN4); these are the total number density and the ξ - and η-
direction momentum flux (per unit mass), respectively. u and v are then the ξ - and η-direction
mean velocity; ρ = nm is the macroscopic density, where m is the mass of the gas molecule.

Based on the system of four equations obtained from (1) and these macroscopic variables,
we can use linear combinations of these equations, purely algebraic manipulations, to derive
the final governing equations we want to solve.

The general simplified equations are now

∂N1

∂t
+ c

(
α
∂N1

∂ξ
+ β

∂N1

∂η

)
= cS(N2N4 −N1N3) (2)

∂N2

∂t
+ c

(
−β ∂N2

∂ξ
+ α

∂N2

∂η

)
= −cS(N2N4 −N1N3) (3)

∂N3

∂t
+ c

(
−α ∂N3

∂ξ
− β

∂N3

∂η

)
= cS(N2N4 −N1N3) (4)

∂N4

∂t
+ c

(
β
∂N4

∂ξ
− α

∂N4

∂η

)
= −cS(N2N4 −N1N3) (5)

where S is the effective collision cross-section [9–16].
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2.1. Boundary conditions

We use purely diffuse reflection boundary conditions [3–5, 10, 11, 13] here, i.e. the properties
of the reflected molecules are independent of their properties before the impact. In other
words, the re-emitted stream has completely lost its memory of the incoming stream, except
for the conservation of the number of molecules (see [4, 5] for the continuous mathematical
form). Moreover, we impose the following conditions: the gases are in Maxwellian
equilibrium with the wall (‘the wall locally behaves as a thermostat’, i.e. the gases reflect
after they have been in thermodynamic equilibrium with the wall temperature), satisfying
Ni(r, t) = γi(r, t)Nwi(r, t), where γi express the accomodation of the discrete gas to the wall
quantities, and Nwi is the discrete Maxwellian densities for the ‘i’-direction set of molecules.
That is, we have

|uj · n|Nwj =
∑
i∈I

Bj |ui · n|Nwi j ∈ R Bj � 0
∑
j∈R

Bj = 1 (6)

with I = {i, (uj − uw) · n < 0} related to the impinging set of molecules and R =
{j, (uj − uw) · n > 0} related to the emerging set of molecules; uw is zero here.

Then, from the above relations, with the velocities of the model being symmetric w.r.t. the
wall, we can see that γj (j ∈ R) does not depend on j , thus at the wall we have Nj = nNwj ,
∀j ∈ R by the definition of n, and considering u · n = 0, |ui · n| = |uj · n|∀i, j , uw = 0.

The diffuse reflection boundary conditions become

Nw2N1 = Nw1N2 βN1 + αN2 − βN3 − αN4 = 0. (7)

This means (i) the Maxwellian at the walls dominates and (ii) no penetration occurs across the
wall.

The Maxwellian densities Nwi at the wall, as derived in [4, 11], are

Nwi = (n/4){1 + (2/c2)uw · ui + (−1)i[(uw · u2)
2 − (uw · u1)

2](1/c4)}. (8)

2.2. Stationary non-boundary-driven quasi-2D flow

We look for a solution depending on η (the cross-stream direction) only, i.e. the case of many
molecules flowing (with macroscopical u(η)) hydrodynamically only along the ξ -direction
(confined in a slender channel) between an inlet and outlet and reaching steady state at ξ0

where the discrete number density n0 is well defined locally there. Let R̂ = S(N2N4 −N1N3),
or R̄ = (n2n4 −n1n3), where ni = Ni/n0; and then use non-dimensionalU = u/c0, Y = η/d,
d is the channel width. c0 could be related to a non-boundary-driven unit force [4,13,14,17].

The system of equations (2)–(5) above can thus be simplified to

∂n1

∂Y
= R̄

βKn

∂n2

∂Y
= − R̄

αKn

∂n3

∂Y
= − R̄

βKn

∂n4

∂Y
= R̄

αKn

where the Knudsen number Kn = 1/(dSn0). After using linear combinations, we have

∂n/n0

∂Y
= 0 and

∂(nu/c)

∂η
= 2

αβ
R̂.

As U = cn0(αn1 − βn2 − αn3 + βn4)/(nc0), so we also have

nc0

cn0

∂U

∂Y
= 2

Knαβ
R̄ = 2

α

∂n1

∂Y
= 2

β

∂n4

∂Y
= − 2

β

∂n2

∂Y
= − 2

α

∂n3

∂Y
. (9)

Integrating the above equation we then obtain

2n1 = AU +K1 2n4 = BU +K4 2n2 = −BU +K2 2n3 = −AU +K3
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where

A = α
nc0

cn0
B = β

nc0

cn0
. (10)

When the state of interest is selected as the fully developed state (a stationary state with
balancing between externally non-boundary-driven unit-force and dissipations from confined
boundaries [2–5]), or n = n0, c = c0, then we obtain A = α, B = β.

To include the effect of grazing collisions, especially near the region of gas–solid
reflections or interactions, we define the ratio = n/n0. If the ratio is unity, there is no effect
from grazing collisions. Meanwhile, we fix c = c0 for simplicity.

As for the general boundary conditions [5], we use the idea that the number density
Ni = Nwall|i (the Maxwellian density) at the wall for i = 1, 2, 3, 4, which means molecules
are in a Maxwellian equilibrium with the boundary just before they re-emit from the confined
boundary, e.g. the wall. Derivations of this kind of Maxwellian density have been mentioned
above.

From these boundary conditions, with V = 0, i.e. B(n1 − n3) = A(n4 − n2), and n =
n1 + n2 + n3 + n4 = ratio, we thus obtain K1 = K3, K2 = K4, K1 +K2 = ratio and

dU

dY
= A2 − B2

2KnAB

(
U 2 − K1 −K2

A2 − B2

)
A �= B AB �= 0. (11)

Assuming the symmetry principle holds for this kind of non-boundary-driven flow, then the
remaining boundary conditions are

dU(0)

dY
= 0 U

(
Y = 1

2

)
= Us = 2K2 − ratio

A + B

where Us is the velocity slip at the wall. Uwall = 0 here.
After direct integration of ordinary differential equation (8), we obtain one family of

solutions for certain A (α), B (β), Kn; A (α), B (β) being strongly linked to maximum
admissible orientations (θ ) (whereas the minimum θ corresponds to Us = 0)

U = G tanh(C −GKY) where G =
(

2K2 − ratio

A2 − B2

)1/2

K = A2 − B2

2ABKn

(12)

where C will depend on the specific gas–surface interface. The principle of fixing θ is similar
to that adopted in [18]. We also take the data of Gaede [19] into consideration to fix C since
his data are for a kind of non-boundary-driven stationary flow which is similar to ours and
could be a guideline for our macroscopic velocity field. Thus, C could be fixed once the gas
and the solid boundary are known [14].

With these velocity fields, we also can calculate the kinetic temperature and/or pressure
fields following the procedures in [4] from the modified discrete kinetic theory [20]. The direct
integration of U then gives us the dimensionless volume (or mass) flow rate

Qm = −2
2ABKn

A2 − B2

{
log

[
cosh

(
C − GK

2

)]
− log[cosh(C)]

}
(13)

which could be compared with previous data (as in [3,4]; please see especially the references
cited in [3] for the application to the plane Poiseuille flow of rarefied gases).

3. Results and discussion

To check the effect of grazing collisions for the stationary flow in consideration, i.e. a non-
boundary-driven case, we plot Qm versus Kn for different ratios in figure 1, with data of
previous attempts included [3]. We can observe the significant contributions or shifts of Qm
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Figure 1. Comparison with other approaches and experiments for different ratios due to grazing-
collision enhanced flow.

due to different ratios or effects of grazing collisions. Experimental data, such as Dong’s and/or
other numerical approaches, such as that of Cercignani (using continuous Boltzmann model)
or Huang and Stoy could be quantitatively approximated by our approaches (using θ and the
ratio based on the arguments in [13, 14]). The minor differences may be due to the discrete
equilibrium Maxwellian (distribution) we used as the boundary condition [10, 11] or other
open problems of the four-velocity model [4, 13, 14, 16], for example, one-speed limitation
of the four-velocity model. Note that the measurements for comparison as shown in figure 1
or obtained in [3] or [4] were conducted around the mid-1950s for monatomic gases flowing
along glass-walled channels.

As we know, for the boundary conditions, the most suitable state along the boundary
(wall) should be a non-equilibrium one which is more direct for the solution of a stationary
state [2] (already balanced between the viscous shear and non-boundary-driven external force)
for many particles subjected to binary collisions only.
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